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Abstract

“The success of machine learning algorithms generally depends on data representation”

— Yoshua Bengio!
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Figure 1: Text Representation Learning with Heterogeneous Information

Different representations for different text data types (e.g., word, short-text, sentence,
etc.) may result in the lack or exposure of helpful information, which determines whether
the algorithm can solve the problem effectively. Although language-agnostic sequence-
to-sequence pre-training methods lead to nontrivial improvements in text representation
learning, such methods still require the support of numerous monolingual corpora, and
the model is also enormous. Previous work showed that text embedding performance
could be effectively enhanced by injecting domain-specific prior knowledge. However,
domain-specific prior knowledge is time-consuming and laborious to acquire. Thus, we

suppose that injecting semantic-level general language knowledge in the training phase of

'Bengio received the 2018 ACM A.M. Turing Award.
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the model can likewise effectively improve the expressiveness and reduce the model pa-

rameters. Moreover, we experimented with multi-type linguistic knowledge (this knowl-

edge is usually heterogeneous information) to model learning text representations, and

the performance was further improved, as shown in Figure 1. In this work, we explore the

representation of three text structures:

I:

II:

I1I:

Word Representation

Most popular word representation methods are often accompanied by the training
of large language models (i.e., Pre-trained Language Models) today. Since it can
encode the current meaning of words according to their context, e.g., Bidirectional
Encoder Representations from Transformers (BERT). This work explores the po-
tential connection between BERT-based pre-trained language models and sememe
and provides new reflections for constructing cross-linguistic sememe knowledge.
More further, One of the causes why sememe has yet to be widely employed is
that it does not satisfy the requirements of specific fields. Thus, we propose a
sememe-oriented data augmentation method, which can effectively make sememe

cover specific fields.

Short-text Representation

Compared to long texts, due to limited length, short texts lack context informa-
tion and strict syntactic structure, which are necessary for text understanding. In
recent years, the marvelous success of Short-text Representation has depended on
utilizing graph neural networks to fuse large proportions of heterogeneous informa-
tion. However, with the enhancement of text specialization, the scale of knowledge
nodes will furthermore become immense. This work takes advantage of the proper-
ties of sememe to significantly reduce the scale of knowledge nodes and maintain

the expressiveness of the original model.

Sentence Representation
Encoding sequences using Graph Neural Networks can effectively fuse knowledge
(e.g., Short Text Classification), though this approach completely abandons the se-

b
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quence order. This work utilizes a combination of sequence-to-sequence encod-
ing and heterogeneous information in fusing sequence information with external
knowledge to improve the expressiveness of the original model effectively. To this
end, we designed a Paper Recommendation System based on this model, namely
Miyu (ﬁ ). Furthermore, we use state-of-the-art unsupervised multi-hop question
generation methods to construct the training dataset, which effectively helps stu-

dents to retrieve relevant papers utilizing fewer terminologies.

Keywords: Representation Learning, Sememe Knowledge Base, Knowledge Ex-
traction, Graph Neural Network, Deep Clustering Network, Word Embedding, Pretrained

Language Model, Natural Language Processing, Deep Neural Network
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1. Introduction

Representation Learning (RL), i.e., learning representations of the data, has considerable
importance in machine learning and artificial intelligence (Figure 1.1). The performance
of machine learning methods heavily depends on the choice of data representation on
which they are applied. The rapidly developing field of representation learning concerns
questions about how we can best learn meaningful and valuable data representations.
“ The Sciences of the Artificial” suggested that human information processing (includ-
ing problem-solving, learning and discovering new knowledge) could be abstracted into
simple mathematical models [1], as early as 1969. According to a simple information
processing model, coupled with computers’ computing speed and massive storage space,
artificial intelligence should be more powerful than humans. However, in any case, as we
have seen, this did not occur. One important reason is that we have not yet been able to

decipher how the human brain encodes and stores knowledge.

LR/XGBoost

| Daia g Preprocessing g "I
Preprocessing 4
Learning
Launch A/B Testing Model Training

CONV
Pooling

Figure 1.1: Representation learning lies at the heart of the empirical success of deep

learning for dealing with the curse of dimensionality.

Proverbial, humans usually acquire knowledge by reading books (in this thesis, we do
not consider audio-visual data, i.e., multi-modal data), despite the fact that books contain
a large amount of plain text data (or symbolic data). Making the computer represent and
store text data conveniently for calculation is the crux of triumph. This is also the core
problem that Natural Language Processing (NLP) deals with. Simply put, no matter how
long the text is, we can break it down into numerous token components. A token can be a
word, a sentence, or even an article depending on the task. We can regard token X to the

representation of token Y as an injective function, though it does not satisfy the surjective
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condition, and the goal is to find a mapping function f,pping Such that fupping : X —Y
and can preserve the basic structure of X. When Y exists in a continuous space, it is called
distributed representation learning [2] (the representation learning involved in this thesis
is all based on distributed representation), and first developed in the context of statistical

language modeling in neural net language models [3].

.I- Informatton .I- Information .Il Information

L l Lear Illilg K/mu ledge Extraction
earning ii \% Heterogeneom
Information
g Brain - "" Language Model > ¥ Learning
7\ Modeling based on
1 Store Store M GNN or RNN

N '
/% Knowledge ‘ N-dimensional Space ‘ N-dimensional Space

(a) Biological knowledge storage (b) Knowledge storage for language models (c) Knowledge storage based on
heterogeneous information

Figure 1.2: Three ways of learning/storing knowledge. The right subfigure (c) is a new
way proposed in this thesis. We argue that decomposing heterogeneous information is the

key to learning representations.

However, one of the significant drawbacks of deep learning-based representational
learning approaches is that it requires a large amount of training data, which consumes
many resources and leaves much cutting-edge technology in the hands of big companies
with deep pockets, which is not what we want to see. We want like to find a simple way
to improve this problem. For example, to lose as little semantic information as possible
during information acquisition and training, retain as much heterogeneous text informa-
tion as possible. In other words, utilize diverse textual information as training data. That
is Improving Text Representation Learning by Modeling Heterogeneous Information. We
argue that information is diverse, and humans can learn and store information fast since
they can fully absorb diverse information. However, getting machines to learn diverse

knowledge as well as humans is a challenging assignment. Historically, there have been

2
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efforts to bridge such a gap to better use the information that exists in the world, as shown

in Figure 1.2.

(a) Humans are suitably educated from childhood, so they can easily understand the

diverse information in life and record the knowledge in neurons.

(b) Researchers leverage self-supervised learning [4] to learn the information from
large corpora (i.e., Language Models) [5] and store knowledge in n-dimensional

space.

(c) Employ external knowledge or knowledge extraction to decompose diverse in-
formation into heterogeneous information, then perform representation learning

through simple models and lightweight data.

This thesis focuses on utilizing heterogeneous information to encode text representations.

We mainly discussed the following issues:

1. What kind of knowledge do we need? It should be universal, cross-linguistic, and

able to resolve semantic disagreements.
2. How to obtain such knowledge.

The first step in processing text information is encoding and projecting it into a particular
space. However, text-based feature extraction is incredibly complex. For example, the
vocabulary that exists in the world is enormous. Furthermore, sometimes a word means
nearly the same as another word, and sometimes words are the same, but the meaning is
different. We wanted to explore a simple way to solve these problems, and the Sememe
Knowledge Base (SKB) seemed to be what we needed. Before the advent of the deep
learning era, sememe ~ s low-manifold properties in high-dimensional space were one of
the effective methods for interpreting and computing natural language. However, pure
data-driven based on deep learning requires numerous computational resources, so we
suppose that invoking a cross-linguistic sememe knowledge base as a priori knowledge
data-driven is a good choice at this stage.

A sememe is a semantic language unit of meaning [6]; it is indivisible. However,

people usually employ words as the minimum semantic unit because words as semantic
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Apples have been grown for thousands of years in Asia and Europe.

Sentence Apple was founded in 1976 by Steve Jobs.
Apple were a British psychedelic rock band. The band was founded in Cardiff.

-------------------------------------------------------------------- character ----

S, an edible fruit an American a British
St (disambiguation) technology company psychedelic rock band
Sememe fruit, red... company, technology ... band, British...

Figure 1.3: Word-based semantic units (e.g. “apple” . It has very many senses.
However, No matter how a word changes its sense, it is always composed of several

primary and single sememes.)

representations are available for writing, yet sememe is only a semantic concept. Usu-
ally, there is a sense semantic unit between the sememe and the word (as shown in Figure
1.3). linguists believe that all languages have the same limited sememe space [7] (e.g.
HowNet SKB [8]). Moreover, cooperate with the multilingual encyclopedic dictionary
as BabelNet [9] to build a multilingual SKB as [10]. Furthermore, Sememe can syn-
thesize words and represent the essential meaning was successfully applied to Neural
Networks [11] [12], Reverse Dictionaries [13] and Textual Adversarial Attacking [14],
etc. We found that sememes are a remarkable “Completeness” in Natural Language
Understanding, which can be easily embedded in text representations to compensate for
the shortcomings of Language Models (like in Figure 1.4).

SKB has been successfully applied to many NLP tasks, and by learning the smallest
unit of meaning, computers can more easily understand human language. However, Exist-
ing sememe KBs are built on only manual annotation, human annotations have personal
understanding biases, the meaning of vocabulary will be constantly updated and changed
with the times, and artificial methods are not always practical. To address the issue, we
propose an unsupervised method based on a deep clustering network (DCN) [15] to build

a sememe KB, and you can use any language to build a KB through this method. We
4
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Figure 1.4: Details of Heterogeneous Knowledge

first learn the distributed representation of multilingual words, then align them in a single
vector space, learn the multi-layer meaning of each word through the self-attention mech-
anism, and use a DCN to cluster sememe features. Finally, we completed the prediction
using only the 10-dimensional sememe space in English. Moreover, One of the reasons
why sememe has yet to be widely employed is that it does not satisfy the requirements of
specific fields. We suppose that if the sememe can represent the basic meaning of a word,
then replacing the word with its sememes does not change its original meaning. More
specifically, we solve the problem of Controlled Defining Vocabulary (CDV) [16] cover-
age by replacing the definitions of some words that CDV does not cover with definitions
consisting of sememe. Thus, we propose a data augmentation method for building SKB
via reconstructing dictionary definitions, which can effectively construct SKB to cover
specific fields (detailed in Chapter 2).

For modeling utilizing heterogeneous information, we tried two main natural lan-

SHIZUOKA INSTITUTE OF SCIENCE AND TECHNOLOGY



guage processing tasks, Short Text Classification (STC) [17] and Recommendation Sys-

tem [18] (detailed in Chapter 3 and Chapter 4 respectively).

* Compared to long texts, due to limited length, short texts lack context information
and strict syntactic structure, which are necessary to text understanding. One ap-
proach is to construct a heterogeneous information network by referencing external
entity knowledge base information [19] or using topic models to discover latent
topics information in the original corpus [20]. However, the introduction of this ex-
ternal knowledge has a general disadvantage because, with the increasing amount
of information, the senses of an entity go far beyond its definition. Therefore we
proposed an alternative way to construct entity networks, using SKBs to construct
entity network connections. Extensive experiment results showed that our method
outperforms the baseline model by 0.57 percentage points in accuracy and 0.08

percentage points in F1 score (detailed in Chapter 3).

* Researchers quickly find and understand the articles relevant to their research re-
mains challenging due to the rapid iteration of technologies and the ever-increasing
volume of scientific articles. In this thesis, we propose a method for question gen-
eration based on unsupervised multi-hop question answering to adapt to the begin-
ner’s questioning style. we aim to add heterogeneous information while encoding
the syntactic structure information of text to improve the accuracy of downstream
tasks. For this purpose, we have developed an NLP paper recommendation sys-
tem. In extensive experiments, our method shows comparable performance, we
add some heterogeneous information (such as the title, author, and sememe) to
the baseline model to further improve the accuracy of the paper recommendation.
acc@1, acc@10 and acc@100 ! improved by 65.38 — 70.26, 77.40 — 84.95 and
84.89 — 94.36 (detailed in Chapter 4).

lacc@1/10/100 denotes the accuracy that target papers appear in top 1/10/100, higher

better
6
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2. Word Representation

In this chapter, we will briefly introduce the mainstream word representation models and
analyze their advantages and disadvantages in section 2.1. Then we will explain how
our method addresses these problems in section 2.3, then present our method in detail.

Finally, the experimental results are summarized in section 2.4.

2.1 Related Work

One-hot
Representation

5 Knowledge Graph
Graph Embedding Embedding

Matrix Factorization

Context Based
Euclidean space
Based on LM
Not Based on

Word Representation

Skip-Gram
Distributed (0/:10)//4
Representation
Gaussian
Embedding

\

Figure 2.1: Catrgory of Word Representation

How to represent a word as a vector is the most basic and foremost technology in
NLP. It has a long history [21-23]. Many various models were proposed for computing
word representations, including the famous Latent Semantic Analysis (LSA) and Latent
Dirichlet Allocation (LDA), although they are computationally expensive. We can use

a tree to summarize the word representation, as shown in Figure 2.1. Since the one-hot

7
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based method is a sparse representation and cannot express the similarity of words. In
this thesis, we only focus on distributed representation of words.

There are two classes of word representations in the Euclidean space, one is to con-
sider the global information of the corpus (e.g., Matrix Factorization (MF) [24]), and
the other is to only focus on the information of the current window (e.g., Skip-Gram,
CBOW [25] etc.). MF-based methods such as Singular Value Decomposition (SVD) are
not described in this thesis. The concept of the Skip-Gram is to maximize the probability
of predicting nearby words for a known central word w; € C in the current window, when

the window size is m, the likelihood function can be written as
C|

[T POwisjlw). 2.1)

i=1 —m<j<m, j#0

On the other hand, the CBOW model predicts the central word as the target word accord-
ing to its context. The context is represented by words contained in a fixed-size window

around the central word (like Figure 2.2). Some researchers combine MF and Skip-Gram

predict given predict
Skip-Gram: word (1) <—m—> word (3) word (4) -
(3-gram) e .
given predict given

T e N TN XD

Figure 2.2: Word Representation for Non Language Models

to compensate for word representation’s computational complexity and lack of holistic
view issues, such as Global Vectors for Word Representation (GloVe) [26]. Moreover,
since the word representation learned by GloVe is fixed, it does not consider the word
confidence. Thus the Gaussian Embedding [27] is born. He utilized a Gaussian distribu-

tion to represent is a word. The representation of a word can be written as
Embedding,orqg ~ N (U, X). (2.2)

We can fast assess a word’s confidence by the variance of Gaussian distribution. KL

divergence [28] is usually used to compare the similarity of two word distributions.
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2.1.1 Contextualized Representation

The earliest way to learn word representations is the Feedforward Neural Net Language
Model (NNLM), proposed by Bengio et al. in 2003 [29]. However, NNLM has a fatal
shortcoming. Its window is limited. That is, when predicting the next word, it only

considers the number of words in the previous window size, not all previous words. This

Based on Markov Property
given ( given given predict
NNLM: word (D) word(3) word (3) R yord (4) -

given predict & given predict & given predict

RNN-based: word (1) If;;gf: word (2) 11{;3221 word (3) I?;igfsn word (4) -

Figure 2.3: NNLM vs. RNN-based

problem can be solved using sequence encoding-based Bidirectional Language Models or

Masked Language Models (e.g., ELMo [30], BERT, etc.).

2.1.2 Bidirectional Language Models

Word2Vec trains a fixed word vector for each word through a large-scale corpus but not
addressing the polysemous word problem. However, the bidirectional language model
solves this problem by increasing the neural network’s depth. In an RNN-based encoder-
decoder machine translation system, [31] showed that the representations learned at the
first layer in a 2-layer LSTM encoder are better at predicting POS tags then second layer.
Finally, the top layer of an LSTM for encoding word context [32] has been shown to
learn representations of word sense. A typical case is ELMo (Figure 2.4), which uses a
deep biLSTM to compute semantic-level representations of words. Each biLSTM layer
outputs a context-dependent representation ﬁ%‘/[ ori%‘” where [ = 1,...,L. The top layer

biLSTM output, h %4 oriiLf is used to predict the next word w; 1 or w;_ with a Softmax

9
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layer. The word representation can be defined as
_>
{w W WM =1, L), 2.3)

Then we concatenate bi-directional hidden states and the word embedding to obtain the

word representations.

given predict & given

predict & given predict

ELMo: word (1) el word 2) [l word 5) [l wori) W . |

Figure 2.4: Embedding from language models

2.1.3 Masked Language Models

BiLLM actually learns two separate recurrent neural networks, which is different from
what we want. Then how to employ a simpler network to implement it becomes a topic
of interest for researchers. However, Masked LM is one of the solutions. Masked LM
was proposed as early as 1953, but was only used extensively in the advent of BERT like

Figure 2.5. BERT is for pre-training Transformer’s [33] encoder. Bert randomly masks

predict

------- e e
! Vot o | | o )
i o [ 1 1 o |
. P T ) o .

BERT: Self-Attention + FFNN Layers

given given given

Figure 2.5: Bidirectional Encoder Representations from Transformers

words, uses the masked words as labels, and predicts them using a Scaled Dot-Product
Attention mechanism. The input consists of queries and keys of dimension dy, and values

of dimension d,, then compute the dot products of the query with all keys, and apply a

10
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softmax function to obtain the weights on the values as
T

Attention(Q,K,V) = Softmax(%)v.
k

0, K, and V are the queries, keys, and values matrix. The values matrix is usually uti-
lized in pre-training to predict the masked words. The values here are defined as packed
word embedding matrices. Finally, the target word is queried in the vocabulary through a
feed-forward neural network, which consists of two linear transformations with a ReLU

activation in between.

2.2 The Completeness of Word Representations

A common drawback of all these models such as Bidirectional Language Models and
Masked Language Models etc. is that they ignore the completeness of the word represen-
tations. Learning representations of a word by its co-occurrence ignores many character-
istics, which can characterize the general meaning of a word but cannot predict a word

with certainty, as in Figure 2.6. Word co-occurrence can effectively discover the features

i
Low Dimensional Representation, Tree Structure |

i

i

i

i

Synonyms, Polysemy, Pronoun ...

Output Layer Information

Modeling Heterogeneous Information

Figure 2.6: Modeling Heterogeneous Knowledge Learning Word Representations

of synonyms and polysemous words. However, this approach relies heavily on large cor-
pora. We found that this knowledge is often entirely hidden in the sememe knowledge,
and the same performance can be obtained by merely modeling the sememe knowledge.
In the remaining sections, we do not elaborate too much on how to learn word vectors

through sememes but focus on how to build a sememe knowledge base and expand the
11
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sememe knowledge base, which is the most critical step to applying sememe knowledge

base better.

2.3 Building Sememe Knowledge Base by Deep
Clustering Network

Because modern people use more diversified words, some words have more than one
meaning. However, No matter how a word changes its meaning, it is always composed of
several primary and single meanings. In linguistics, a sememe is defined as the minimum
semantic unit of human languages. Linguists believe that all languages have the same
limited sememe space.

At this stage, people use manual annotation to build a sememe KB, such as HowNet
SKB, which uses about 2,000 language-independent sememes to manual annotate senses
of over 100 thousand Chinese and English words). Moreover, cooperate with the multilin-
gual encyclopedic dictionary as BabelNet to build a multilingual SKB as [10]. However,
semantics is an iterative system of continuous learning, HowNet is made purely by hand,
and there is no interface for learning and evolution. And the meaning of words is a col-
lection of multiple attributes. The construction of manual annotations will be biased by
humans and ignore some word attributes.

To solve the flaws of manual labeling. In this thesis, we tried to construct sememes
in an unsupervised manner. Our method is motivated by [34] multiple senses of a word
reside in linear superposition within the standard word embeddings [25], and GloVe. Our
idea is that if the surrounding words determine the meaning of a word, then the word’s
current meaning is determined by the weighted summation of the meanings of the sur-
rounding words. According to this idea, we segment the meaning of each word through
the self-attention mechanism based on word embedding. We took the sub-meaning space
of words by weighted summation of each word in each sentence as the original space of

sememes for clustering.

12
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However, the words after the weighted summation still have the original words’ di-
mensions, which is unsuitable for clustering tasks. Because each word in each sentence in
the corpus will generate a single word meaning, this will consume much memory for stor-
age and calculation of clustering space. Moreover, the sememe vector space with a single
word meaning should have a relatively low dimensionality. However, although many data
clustering methods have been proposed, conventional clustering methods usually perform
poorly on high-dimensional data due to the inefficiency of similarity measures used in
these methods. Furthermore, Word embedding has a highly complex data underlying
structure. We want to find an effective method that can cluster a large amount of high-
dimensional data.

In recent years, owing to the development of deep learning, deep neural networks
(DNNs5s) can be used to transform the data into more clustering-friendly representations
due to its inherent property of highly non-linear transformation (since DNNs can approx-
imate any continuous mapping using a reasonable number of parameters [35]). We hope
to learn the low-dimensional minimum meaning of each word through the DNN to make

it more friendly for clustering.

2.3.1 Deep Sememe Clustering

In this study, we use the simplest and most effective deep clustering network (DCN)
[36]. DCN is one of the most remarkable methods in this field. It first learns the low-
dimensional representation of the data by pre-training a DNN and then clusters the low-
dimensional data as the initial value. Finally, the clustering effect is optimized through
continuous iterative learning of low-dimensional space. It is fully compliant and can be

applied to our sememe clustering(as shown in Figure 2.7).
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Latent Features

—Ti—> —> =Zi

Words current meaning

The vector space of K-means
Sememes Clustering
Figure 2.7: Construction of sememes based on DCN

Dimensionality Reduction

DCN adopts an autoencoder (AE) [37] to learn clustering-friendly representations. AE
is a powerful method to train a mapping function based on DNNs, which ensures the
minimum reconstruction error between the coder layer and data layer. Specifically, the

approaches look into an optimization problem of the following form:

N
L,= %pizzlf(g(f(wi;%;%) L), (2.4)

where f (-; %) denotes the nonlinear mapping function and % denote the set of parame-

ters, i.e.,
Fe#):RY —» RF, 2.5)

J (zi;#') is the encoder network output given a set of data samples {@;},_, . where
x; € RM and R < M, Since the hidden layer usually has smaller dimensionality than the
data layer, it can help find the most salient features of data. where g(-;Z): RR — RY
denotes the reconstruction function and 2 denote the set of parameters. In the construc-
tion of sememes, it can help us map the low-dimensional sememes space to the original

dimensional sememes space for evaluation (shown in Figure 2.8), we will explain in detail
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Latent Features

The vector space of
Sememes

—

> Restore dimension
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\

Encoder Layers

Figure 2.8: Restore data dimensions

in the experimental part of this article. The function £(-) : RM — R is a certain loss func-
tion that measures the reconstruction error. In the DCN, the least square loss is adopted

as the reconstruction error, i.e., £(-) =| - ||3.

Clustering

The optimization criterion of DNC is to connect DNN-based DR and clustering methods.
The clustering method can be replaced, we only used the simplest and most effective K-
means [38] in our research, which is also the clustering method adopted in the original
work. The task of K-means is to group the N data samples into K categories by optimizing

the following cost function:
& 2
Lc:nll\iJnZHf(:ci;W)—Ms,-uz (2.6)
i=1

where M € RE*K is the sememe space we want to get, where s; € RX is the assignment
vector of data point i which has only one non-zero element, i.e., M's; € RR s; helps us
to find the vector closest to the f (x;;#) in the M matrix, and then update the M 's; to

achieve our goal by continuously updating the M matrix. If we set j as each element in
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s;, then the s; vector can be defined as follows:

1, if j= argmin ||f(xi?)— M,
Sij k={1,....K} 2.7)
0, otherwise.
For the above formula, we must first know the distribution of the M matrix to calculate,
thus we must first obtain the low-dimensional representation of all the data through the
AE, and obtain the initial matrix M by clustering all the low-dimensional data in advance

distributed.

Optimization

Finally, we use stochastic gradient descent (SGD) to iteratively optimize the encoder pa-
rameter %/, the decoder parameter 2 and the sememe space M through the following
formula:

N

1 L,+ AL, 2.8
i & (Ln AL) (2.8)

A > 0is a regularization parameter which balances the reconstruction error versus finding

K-means friendly latent representations.

2.3.2 Cross-lingual Sememe

Linguists have discovered that using a sememe space can be applied to any language.
thus we proposed whether we can learn the sememe space using only a common word
embedding that has been aligned in a single vector space, we only need to learn a sememe

space and it can be applied to all languages (as shown in Figure 2.9).
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Word embedding space alignment
Applicable to multilingual

G~

Monolingual sememe clustering

Figure 2.9: After aligning the word embedding space, only using monolingual word

embedding for sememe clustering can be applied to other languages.

2.3.3 Experiments

Pre-processing

In the entire sememe clustering process, we must first obtain the original sememe space
before clustering. Since we assume that each word has only one meaning in the current
sentence, we need to find all the sentences containing this word in the entire corpus if we
want to find all the meanings of a word. Therefore we need to create sentence indices for

each word to find which sentence index contains this word in the corpus.

Sentence Indices Dictionary (SID)

We intercept SGB in the Wikipedia corpus as a raw corpus for preprocessing and use
SentencePiece [39] ’s BPE [40] tokenizer to segment the raw corpus. We fixed the vocab-
ulary of BPE to 200k. In terms of sentence segmentation, to make the meaning of each
sentence as complete as possible, we did not directly use a fixed length for segmentation
but used 42 kinds of symbols like “,.?!() ” for segmentation. Moreover, because we use
the self-attention mechanism to sum the proportions of all words in the sentence to get the
current word meaning, if the sentence is too long, the weight of the important words will
be assigned to the secondary words, which is difficult to get the obvious features of the

current word meaning, thus we filter out sentences greater than 20 words and less than 2
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words. Finally, we got 60 million qualified sentences to create sentence indices.

After constructing the sentence indices, we found that the number of sentences for
specific words is enormous. Since our clustering network is to put all the meanings of all
words into a space for clustering, If the sum of sentences for some words is close to half
of the entire clustering space, the result of our clustering will tend to the meaning of these
words. Therefore we have to balance the number of sentences in the sentence indices. To
solve this problem, we implemented the following methods:

1. Delete stop words (We use stop words defined in NLTK for filtering 1).

2. Set the upper and lower bounds for the number of sentences (shown in Figure
2.10). We set the upper and lower limits to Sk and two batch numbers respectively. If it
exceeds 5k, randomly select Sk sentences from it, and if it is less than two batch numbers,
discard the word.

3. We multiply the original data with an expansion coefficient ¢ € R; and ¢ > 0 be-

~
’~<

Upper bound

Lower bound 1

Number of
sentence indices‘s values

Sentence indices's key

Figure 2.10: The illustration shows the distribution of the number of sentences. The
X axis is the index of the word, and the Y axis is the number of sentences corresponding
to the word. On the right is the distribution of the number of sentences after setting the

upper and lower bounds.

fore the normalization function of self-attention, thus that it is not easy to lose important
features when encountering long texts, In this experiment, we set e = 4.

Finally, the number of sentences actually participating in clustering after being bal-

Thttps://gist.github.com/sebleier/554280
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anced is only 40 million. Note that the above parts are implemented locally, and will be

used as input in DCN later.

Clustering Process

Pre-training

The primary purpose of pre-training is to learn a low-dimensional cluster center matrix
as the initialization of the sememe space M (shown in Algorithm 1). Since the global
distribution needs to be obtained during clustering, it is tremendous, but we cannot build
this matrix in memory. Therefore, we adopted a sampling method when clustering. Each
word only samples sentences of two batch numbers for clustering and loops ten times.
Then the clustering results of ten times are clustered again to obtain the final cluster cen-
ter initialization matrix.

In the experiment, we detection that the trained loss curve is jagged, Which may be
caused by the uneven distribution of data samples. Since our method is to loop each word
and perform the self-attention calculation on each word in turn. Although we scrambled
the appearance order of the words before the loop, the loss was not smooth due to the
inconsistency of word embeddings and sentences quality. Thus, according to the amount
of memory used, we loop 500 words at a time and fully disrupt these words after doing
self-attention (shown in Algorithm 1). We defined the DCN-encoder size as [200, 200,
800, 10, 800, 200, 200], the input size is 300 dimensional aligned fasttext word embed-
ding(Bojanowski et al. [41]). The learning rate is 0.003. And, the cluster centers are set
to 2048, because we hope to make the cluster centers more dispersed while retaining the
semantics of the sememe space to the greatest extent, we use t-SNE [42] to reduce the
dimensionality of the sememe space and analyze it by density, and found that 2k clusters
can represent a rough meaning. If there are more clusters, the semantics will be more
detailed. Figure 2.11 presents the reconstruction error of the autoencoder during the pre-

training stage,

19

SHIZUOKA INSTITUTE OF SCIENCE AND TECHNOLOGY



Algorithm 1: Sememe DCN Pre-training

Data: Sentence indices dictionary SID, Word embeddings W E

Result: Initialization matrix M

// Train an autoencoder network

1 while epoch do

2 | while all vocabulary do

3 batch < SELFATTENTION(WE;SID);
4 while batch do

5 WL — L,( W2,

6 end

7 | end

8 end

// Initialize the clustering space

9 latent_data <— new Array;

10 while all vocabulary do

11 | batch < SELFATTENTION(WE;SID);
12 | while batch do

13 latent_data.append (f (xi; ™)),
14 | end

15 end

16 M < KMEANS (latent_data);
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Figure 2.11: Reconstruction error of the autoencoder during the pre-training stage.
(We set a batch size of 64 sentences and observed that it quickly converges and stabilizes

within 1,000 batches)

Fine-tuning And Results

In the Fine-tuning stage, we use the original DCN to optimize the sememe space, and we
found that the reconstruction loss of the autoencoder in the Fine-tuning phase is consistent
with the pre-training phase and there is no downward trend.

Finally, we predicted the sememes of some words and their probabilities and used
the existing English SID to search for sememes in other languages (shown in Table 2.1).
Through the table, we found that sememe can express certain characteristics of words.
The decimals in the table represent the probability of this sememe in the overall sememe
space (Only the 6 with the highest probability are listed). The sememe we calculated is
just a vector of the original word embedding space, it is not a word, therefore we find
the nearest three words by cosine similarity to represent the meaning of sememe. Since
the sememes predictions in other languages depend entirely on the quality of English
sememes and the degree of alignment with English, and you can use the data set that
MUSE has already trained, thus we will not show the relevant results of other language

predictions here.
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Ist 2nd 3rd 4th Sth 6th

projector interfacing; bluescreen; wirelessly; imageworks; film; windshields;
device; screensavers; handsets; spotlighting; movie; plexiglass;

directionality =~ audio/visual  functionality showcase screenplay windscreens
(0.03854) (0.03646) (0.03229) (0.02812) (0.02083) (0.01667)
woodland grassy; outcroppings;  porcupines; lakeview; vegetation; northeast;
thickets; bottomlands; birds; riverside; habitats; southwest;

vegetation riverbeds raccoons park habitat northwesternmost

(0.07993) (0.05168) (0.04127) (0.02564) (0.02404) (0.02143)

stamen prickles; grasses; laterally; cottonwoods; pinkish; protruding;
fleshy; berries; tapering; cattails; yellowish; shallowly;
leathery shrubs serrations meadowsweet  brownish lengthwise
(0.03854) (0.03768) (0.03401) (0.02941) (0.02574) (0.01195)

Table 2.1: Sememes Cluster Prediction in English. More examples can be found in

Appendix Table Al .

2.4 Conclusion

In this chapter, we discuss the construction and expansion of SKB in the unsupervised
case and prove that sememe exists in low-dimensional spaces, which coincides with the
properties of sememe. Moreover, we indirectly revealed that the pre-trained language
model implies the representation information of sememe in the learning process of the

word representation.
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3. Short Text Representation

Since people prefer to utilize more concise text to express what they want to say in product
reviews, movie reviews, queries, or tweets, utilizing NLP techniques to help understand
these short texts would have been inevitable [17]. Compared to sentences, due to limited
length, short texts lack context information and strict syntactic structure, which are nec-
essary to text understanding.

A practical solution is using graphs to represent text information and learning text
representations through Graph Neural Networks (GNNs). GNNs are essentially graph
representation learning models. GNNs learn embeddings for each node in the graph and
aggregate the node embeddings to produce the graph embeddings, which can also be
multi-layered such as Figure 3.1.

Node Representation
Learning

GNN Layers

Figure 3.1: Multilayer Graph Neural Networks

Conventionally, text sequences are considered tokens such as TF-IDF in NLP tasks.
Thus, popular deep learning techniques such as recurrent neural networks [43] and con-
volutional neural networks [44] have been widely applied for modeling text sequences.

However, these methods are unable to express structural information (i.e. syntactic pars-
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ing trees like dependency and constituency parsing trees). The most widespread solution
is to encode structural information by constructing graphs and using graph neural net-
works (GNNs) [45-48]. In practice, many graphs have various node and edge types, such
as knowledge graph, AMR graph, etc., which are called heterogeneous graphs (such as
Figure 3.2) . Our motivation is to use heterogeneous graphs to encode heterogeneous in-

formation e.g., Text-GCN [49], HGAT [50], SHINE [51] etc.

.. . - ’
\ . \
N \
N \
\ ’ >,
N

U3, /'/ e
Heterogeneous Graph . N Homogeneous Graph A . “
Nodes are treated as different types Nodes are treated as a uniform type

Figure 3.2: Heterogeneous vs Homogeneous Graph

With the enhancement of text specialization, the scale of knowledge nodes will also
become immense. Therefore we take advantage of the properties of sememe to signifi-
cantly reduce the scale of knowledge nodes and maintain the expressiveness of the origi-
nal model. However, since the vocabulary in SKBs is limited, it is difficult for manually
constructed SKBs to encompass many proper nouns. Due to its lower accuracy, the DCN-
based approach is challenging to apply to practical downstream tasks. We thus design a
simple SKB augmentation method, which significantly improves the coverage of SKBs
on proper nouns and effectively compresses the size of graph neural networks. We will
describe this method in detail in Section 3.3.

This chapter explores and explains how GNNs can be used to learn short text repre-
sentations. We divide this work into four parts. First, we introduce the basics of GNNss,
and a state-of-the-art method for solving short texts is introduced in Section 3.1. In Sec-

tion 3.2., we analyze the problems of previous methods. Finally, in Sections 3.3 and 3.4,
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we elaborate on our proposed solution.

3.1 Related Work

In the following two subsections, we will introduce the leading technology of graph em-
bedding, Graph Attention Networks in subsection 3.1.1, and a heterogeneous network

based on Graph Attention Networks in subsection 3.1.2.

3.1.1 Graph Attention networks

The learning process of the graph neural network is to map the embedded representation
of the nodes in the previous layer to the next layer through a filter function or named a
graph filter as FILTER(-,-). Graph filtering layers are stacked to layers to generate final
node embeddings. In order to determine the relationship between nodes, generally, this
relationship is expressed as an adjacency matrix A € R"*". Therefore the learning process

of GNN can be written as

h!" = FiLTER (A, HI ) 3.1)
where
= (Y Y n{Yy 3.2)

denotes the node embeddings at the / — 1zA layer.

Attention-based Graph Filters Graph Attention Network (GAT)

Figure 3.3: Types of Graph Filters
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The key to the graph neural network’s success depends on using graph filters. How-
ever, there exists a variety of implementations of graph filters such as Spectral-based
Graph Filters [47], Spatial-based Graph Filters [48, 52], Attention-based Graph Filters
[53]. This thesis only briefly introduces a primary graph filter, which will help the under-

standing of later sections.

Attention-based Graph Filters

Inspired by the successful applications of the attention mechanism of the Transformer
model, Petar Velickovic et al. proposed an attention mechanism for graphs called Graph
Attention Network (GAT) [53]. The attention mechanism considers the semantic simi-
larity between the target node and each neighboring node and assigns higher attention
scores to important neighboring nodes when performing the neighborhood aggregation.

The graph filter function can be defined as
hfl) = FILTER (A,H(H)) =o| Y} oc,-jﬁ/(’)hg. -, (3.3)

where &(-) is a non-linear function, W) is the weight matrix at / — r& layer. o ; 18 defined
as the attention scores for each pair of nodes v; and v, formulated as
exp ( LeakyReLU (ﬁ(l)T [W(l)hglfl D

Y, one hop neighborhood(v;) €XP <LeakyReLU <”( T [W( )h - ”W h - ])] ))
(3.4)

Ot,'j:

where || is the vector concatenation operation.

In practice, many graphs have various node and edge types, which are called het-
erogeneous graphs, such as heterogeneous information network (HIN) as shown in figure
3.4. The following subsection will introduce a state-of-the-art method for short text clas-

sification, and our model will be modified later using this model as a baseline.
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Short texts Entities

Topics That s the conclusion of IBM Corp. markct <. Cambridge
IResearch researchers in Cambridge: ...
IBM
; 0 Sl e i
Technology {flt\;fc }{-Ielp Wanted! Amid signs of a mixed recovery /
- Company
R aiion The Seed of Apple s Innovation: In an era when
most technology ... < — Applelnc.

Figure 3.4: Heterogeneous Information Network for Short Texts

3.1.2 Hierarchical Heterogeneous Graph Representation
Learning

Hierarchical Heterogeneous Graph Representation Learning (SHINE) [51] models the
interaction between words, POS, and entities mainly through word-level graphs, and
dynamically learns the similarity between short texts, enabling the propagation of tags
among connected similar short texts.

This part consists of three subgraphs: Word Graph, POS Tag Graph and Entity Graph.
The introduction of subgraphs is to make short texts have richer contextual feature infor-
mation. The PMI score between word nodes viv and v{v is calculated to construct word
adjacent matrix [A,];; as max(PMI(Vi | v},),0). The construction of part-of-speech tag
graph is the same as word graph, and the entity graph is constructed by replacing the PMI
with the cosine similarity. Finally, these features are concatenated to the complete short

text features as

g1y = CONCATENATE (X, Xposs Xentity) - (3.5)
The adjacency matrix can be expressed as
N R A B
(Xall) Xl if (Xall) Xl 2 5(1”
[Aan;; = (3.6)
0 otherwise

where J,; is a threshold used to sparsity A,; such that short documents are connected

only if they are similar enough. Ultimately, two layers of GCN are used to learn the
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representation of short text as
SOFTMAX (Ay; - ReLu (AyXaWyy) -Way,) (3.7)

where Walll ; and Wi ;; denote the weights of the two layers.

3.2 The Completeness of Short Text Represen-

tations

Since SHINE can effectively represent heterogeneous information, our experiments are
implemented on this basis. However, for complete statistics, using sememes instead of
entity knowledge can enrich the representation of information, as shown in Figure 3.5,
because the number of sememes is limited, significantly reducing the graph’s node space.
In the following sections, we will utilize short text classification as a downstream task to

prove our guess.

Learning Short Text Representations

Output Layer Information

Hierarchical Heterogeneous Graph Representation Learning

Input layer information

The number of sememes is
limited and recognizes
synonyms and polysemous
words.

Completeness Completeness

Figure 3.5: Replacing Entities with Sememes to Learn Representations
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3.3 Data Augmentation of Sememe Knowledge

Base

Manual annotation is flawed because the meaning of words is incremental with the amount
of information, and it is impractical to add and modify SKB artificially. Some stud-
ies on automatic SKB construction have emerged recently. We previously proposed a
method [54] based on deep clustering networks to learn sememe. Specifically, this method
is based on an Auto-encoder to achieve minimal semantic clustering. Instead of generat-
ing specific language-independent sememes, it generates word embeddings with approx-
imate sememe meaning, Regrettably, which is imprecise. Moreover, (Qi et al. 2021) [55]
explored an automatic way to build an SKB via dictionaries with a Controlled Defining
Vocabulary (CDV) [16], and demonstrate the effectiveness of this method; it is even supe-
rior to the most widely used HowNet SKB. The method is to extract the CDV as sememes
in the dictionary definition. However A CDV is composed of high-frequency words. If
the dictionary is large enough, it does not cover all words perfectly, which means some
complex words can not acquire sememe.

To solve this problem, we proposed a way of reconstructing word definitions to in-
crease the lexical coverage of CDV. We hypothesized that if the sememe can represent the
basic meaning of a word, then if replacing the word with its sememes does not change its
original meaning. More specifically, we solve the problem of CDV coverage by replacing
the definitions of some words that CDV does not cover with definitions consisting of se-
meme (as shown in Figure 3.6).

Finally, we employed the sememe internal evaluation criteria defined in [56] for eval-
uation. Moreover, we proposed a novel method to evaluate sememe by constructing a
sememe graph. Because we consider the weight of sememe when constructing the se-
meme graph, it performs excellently in both evaluation methods. We shown the results in

section 3.3.2.
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Ultra-complex Complex Common Sememe

F -
7\
[N / P
] -
| / -
\
N e

widow: A woman whose husband dies is a widow .
| NT——
husband: A husband is a male in a marital relationship .
7 AN
male: Male is the sex of an organism .

External Knowledge

Figure 3.6: If “widow ” is a complex word and “ husband ” is not in sememes, we

can use the definition instead of “ husband ” .

3.3.1 Building Sememe Knowledge Base

This subsection will detail the SKB construction method based on reconstructed word
definitions and how to build a sememe graph for evaluation.

We employed the sememe search strategy of DictSKB [55]. It is intuitive to oper-
ate. Because a good sememe can represent the essential meaning of a word, it is most
straightforward to extract the sememe from the word’s definition. This method starts with
finding the highest frequency m words in the dictionary definition to cover as many dictio-
nary words as possible (Previous experience: m = 2k). Unlike the specialized dictionar-
ies employed by DictSKB, we utilized WordNet! and Wikipedia® as the base corpus for
building SKB. WordNet contains 0.2 million pairs of word senses and definitions, while
Wikipedia contains 6 million pairs of words and detailed explanations. Our approach is
divided into two modules. Since the word definitions in WordNet are shorter and more
precise, we first find the initial Sememe from WordNet and construct a WordNet-based

SKB by matching the annotated words in WordNet. Then we expanded it to Wikipedia

'https://wordnet.princeton.edu/
Zhttps://dumps.wikimedia.org/
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based on the WordNet-based SKB (like Figure 3.7).

@ Original Dictionary (WordNet) Other Dictionaries (Wikipedia)
i \

Pl b N

Dictop; - {Sense, Defination} CDV,,; Dict oy, : {Sense, Defination} Dictorn—pa : {Sense, Defination} CDVoin—pa
| | oo
Li l I Sememe ¥ CDV,,;
SKB,; : {Sense, Sememe} SK Botp, : {Sense, Sememe}  SKBoun—pa : {Sense, Sememe}

Figure 3.7: SKB Expansion Flow Chart: We use WordNet as the original dictionary and
lexical expansion through Wikipedia, sharing a sememe set (As CDV,,;) between them.
From the right side of the illustration, we used the look-up table method to replaced the
De finition of Dict,;,_pa with the Sememe of SKB,,;, which is a straightforward opera-

tion.

WordNet-based SKB

First, we remove the stop words® and meaningless characters and used the entity linking
tool TAGME* to find the 2k most frequent topic words from HowNet word definitions
as the base sememes. TAGME can identify meaningful short phrases in an unstructured
text and link them to a relevant Wikipedia page. This annotation process has implications
that go far beyond the enrichment of the text with explanatory links because it concerns
contextualization and, in some way, the understanding of the text. A case in point, the
definition “ A husband is a male in a marital relationship.” is semantically enriched
by the relations with the entities “ husband ” , “ male” and “ marital relationship ” .
We then used the link_probability parameter provided by TAGME to rank the entities in
the word’s definition and kept only the first four entities with the highest probability as
sememes. We compared the filtered results with DicSKB and HowNet (In Table 3.3.1).

3https://code.google.com/archive/p/stop-words/
“https://sobigdata.d4science.org/group/tagme/
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SKB #Word #Sense #Sememe  #AvgSem

HowNet 50,879 111,519 2,187 2.26
DictSKB+ 70,218 105,160 2,046 6.03
DictSKB 70,218 105,160 1,682 2.04
WordNetSKB 121,697 163,340 2,000 1.83
WikiSKB 385,336 423,249 1,807 2.12
WikiSKB-DA 697,754 800,458 1,992 3.46
WikiSKB-DA+ 697,754 800,458 1,992 5.73

Table 3.1: Statistics of WordNetSKB, WikiSKB & WikiSKB-DA. WikiSKB-DA is a

data

gray

augmented version of WikiSKB, and compared with HowNet and DictSKB. The

font represents the previous SKB results (The same is true for the following tables).

#AvgSem denotes the average Sememe number per sense, and “+” represents this average

over four.

Wikipedia-based SKB

The Wikipedia-based SKB construction is roughly the same as WordNetSKB. The dif-

ference is that Wikipedia’s explanation is too detailed, and in addition, Wikipedia does

not have semantic sense concepts, which significantly increases the noise of constructing

SKB

. To solve these problems, we took the following trick,
Only the first two sentences of each entry in Wikipedia are adopted.
Traverse each word in the Wikipedia entry and use NLTK to terms lemmatization.

Use TF-IDF to remove words below the threshold from the definition. (We set the

lowe bound = 4)
Use the polysemantic annotations in Wikipedia as the sense.

Delete the senses of polysemous words containing the meaning associated with

(43 . 9 [13 » (43 » (13 » [13 » « » [13 » (43 »
film ™, “novel ", “album~, "song , band ", name , ep , game ,
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11 » 3 . »
surname ~ and  tv series .
» Keep only Wikipedia entries with a one-word title.

The WikiSKB was then constructed using the same 2k sememes as WordNetSKB. The
statistics in Table 3.3.1. Since WordNet-based sememes do not cover the Wikipedia entry
definitions perfectly, we reconstructed the entries that were not covered. In detail, we
first used TAGME to extract the entities of each entry and adopted the 2k most frequent
entities as sememes according to the same method as WordNetSKB. Then we found these
words with the same entities from WordNetSKB and replaced them with the sememes of
these words. We also put the statistics of the augmented version for WikiSKB in Table
3.3.1.

Sememe-based Graph Embedding

Our idea about the evaluation of sememe is to construct a bipartite graph by linking words
with sememe to learn the embedding representation of words and then evaluate the quality
of sememe by assessing the quality of word embedding (like Figure 3.8).

We employ second-order similarity of LINE [57] to train the node vectors regarding the
graph embedding model, which is fast and intuitive. In detail, the probability of generating

a neighbor node v; given a node v; can be expressed in the following form:

exp <ﬁ;T : ﬁ,-)

L exp (i - )

pvj|vi)= (3.8)

Where i and &' are denoted as the vector of v itself and v when it is a neighbor, respec-
tively. The empirical probability as p (v; | v;) = WTl,j where w;; is the weight of the edge
i, j; and d; is the degree of vertex i. If we define the importance factor d; of the node, the

loss function can be defined as
— Y d; KL-DIVERGENCE (p (- | vi),p (- | vi)). (3.9)

eV
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Words Sememes

e w )
—_
husband _, \'

Figure 3.8: Sememe based bipartite graph: We only learn the embedding representation
of words by sememe, which means there is no line between words; we use TF-IDF for
the weights of edges. The figure shows that “ wife” and “ husband ” contain the same
sememe, which should have approximate embedding representations. Note that here we
do not consider the embedding representation of the sememe, so we use index instead of

the word of the sememe itself.

3.3.2 Evaluations

This section uses two methods to evaluate our SKB: a collaborative filtering method [58]
in subsection 3.3.2 and an approach based on constructing sememe graphs in subsection

3.3.2.

Evaluate on Consistency Check of Sememe Annotations

This method is motivated by the idea that semantically close senses should have similar
sememes. It actually implements a sememe prediction process that predicts sememes for
a small proportion of senses according to the sememe annotations of the other senses. We
have evaluated our SKB using open source code’. For hyperparameters, we set the same
hyperparameters as the original paper [55], the number of evaluating epochs is 10, the

threshold is 0.8, and the descending confidence factor is 0.93. The evaluation results are in

>https://github.com/thunlp/DictSKB/tree/main/ConsistencyCheck
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Table 3.3.2. We discovered that the accuracy decreases with the increase of the dictionary

lexicon. It is intuitive that the dictionary has many synonyms, while the sememe is static.

SKB MAP F1

HowNet 0.93 0.91
DictSKB+ 0.88 0.86
DictSKB 0.95 0.91
WordNetSKB 0.96 0.87
WikiSKB 0.95 0.86
WikiSKB-AD 0.93 0.90

Table 3.2: The results on Consistency Check of Sememe Annotations: MAP score of
WordNetSKB exceeds the DictSKB, which we indicated in boldface.

Evaluate on Sememe Graph

Our ultimate goal is to build a large SKB, so we combined the knowledge of both SKBs
and evaluated them on some test sets (Shown in Table 3.3.2). We first performed node em-
bedding training using LINE®, where the size of the node embedding is 200 dimensions,
the total number of training samples is 100 million, the starting value of the learning rate
is 0.025, the number of negative samples is 5, and we only used second-order proximity
for training. SKB is sense-based, but each word in Word Similarity Tasks has only one
meaning. Since the sense of words in Wikipedia is huge, we keep only disambiguation
and noun sense for each word, and found that a higher number of sememe for a sense is a
more accurate representation of the meaning. It is undoubtedly. Since we use only about

four sememes to represent the meaning of a sense, it may lose some semantics, but the

Shttps://github.com/tangjianpku/LINE
35

SHIZUOKA INSTITUTE OF SCIENCE AND TECHNOLOGY



Similarity Tasks WordNet&WikiSKB  WordNet&WikiSKB+

WS-353-ALL [59] 36.23 40.00
WS-353-SIM 41.66 45.12
WS-353-REL 22.70 30.26
MC-30 [60] 26.32 31.19
RG-65 [61] 28.71 32.57

Table 3.3: The results on the Sememe graph: We merged WordNetSKB and WikiSKB.
These tasks provide human scoring of the relationship between two words, thus assess-
ing the degree of positive word relatedness. The method is to first calculate the cosine
similarity of the two words and then compare them with the manual tags to calculate the

Spearman correlation coefficient for scoring.

essential meaning can be kept. We released the data to reproduce the results.” Note that
since the previous SKBs (As HowNet&DictSKB) did not provide a weight parameter for
each sememe, we cannot compare the previous SKBs. However, to demonstrate that our
SKB can better represent specialized words we extracted some specialized words in the
Ohsumed dataset® for comparison (Shown in Table 3.3.2). Note that we boost the number
of sememe to 5,000 to maximize the lexicon, other parameters are the same as before, and

the final lexicon size of our SKB-DA is 910,369.

Thttps://github.com/SauronLee/SKB-DA
80hsumed dataset: it includes medical abstracts from the cardiovascular diseases.

http://disi.unitn.it/moschitti/corpora.htm
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Word SKB Sememe

clostridium DictSKB {cause, illness }
SKB-DA {bacterial, cell, swollen}
colitis DictSKB {cause, illness }
SKB-DA {colon, inflammation }
pediatric DictSKB non
SKB-DA {care, child, medical }

Table 3.4: Sememe comparison on the Ohsumed dataset. Where “non” means no
sememe of the word, we have merged WordNetSKB and WikiSKB+ as SKB-DA. More
examples can be found in Appendix Table A2.

3.4 Modeling Heterogeneous Graph Neural Net-

works with Sememe Knowledge

The most important part of analyzing short text in NLP is correctly classifying them for
downstream tasks, For example, sentiment analysis [62], dialogue understanding [63],
news categorization [64], query intent classification [65], and user intent understand-
ing [66].

However, compared to long texts, due to limited length, short texts lack context in-
formation and strict syntactic structure, which are necessary to text understanding. One
approach is to construct a heterogeneous information network by referencing external
entity knowledge base information [19] or using topic models to discover latent topics
information in the original corpus [20].

However, the introduction of this external knowledge has a general disadvantage because,
with the increasing amount of information, the senses of an entity go far beyond its defi-
nition. For example, “ Apple” may be a multinational technology company, a rock band,

or even a person’s name when it is an entity, so it is necessary to distinguish the sense of
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the entity (like Figure 3.9).

Entity node Label node Entity node Sense node Label node

e I
=z -e:
s e ST

Discriminator

company

band

Figure 3.9: Using Sememe Knowledge Bases to construct entity networks. We have
added some sense nodes in the illustration on the right side. Before connecting the se-
meme nodes should first determine the correct sense nodes via sense discriminator. Note,
the sense nodes will be discarded after helping us to learn the weights of the edges be-

tween the entity nodes and the sememe nodes.

Therefore we proposed an alternative way to construct entity networks, using Se-
meme Knowledge Bases (SKBs) to construct entity network connections. Our motivation
is that introducing sememe can better uncover the semantic relationships between short
texts, which move from the word level to the Sense level. Additionally, since the size of
the sememe space is fixed, it can significantly reduce the size of the whole network and
thus save computational resources. However, due to the lack of sememe annotation of
entities in previous SKBs, We have extended the SKB using the method of [67], which
uses the automatic construction of SKBs [55]. Specifically, we utilize WordNet as the
base lexicon and Wikipedia as the expansion lexicon, noting that they share a Controlled
Defining Vocabulary (CDV) [16] set between them.

Ultimately, we use the state-of-the-art model [51] in short text classification to learn
a heterogeneous graph neural network containing the Sememe network. After extensive
experiments, our method outperforms the original model by 0.57 percentage points in ac-

curacy and 0.08 percentage points in F1 score.
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In the following subsections will be described how to construct an entity SKB (In

subsection 2.1) and build a graph network model based on SKB (In subsection 2.2).

3.4.1 Construct An Entity Knowledge Base

We use open source code for SKB-based data augmentation® [67]. It is intuitive to op-
erate. Because a good sememe can represent the essential meaning of a word, it is most
straightforward to extract the sememe from the word definition. First, we utilize Word-
Net!? as the base lexicon, extract the words tagged by TagMe!! in the word definition of
WordNet and keep the set of m words with the highest frequency as sememes, then ex-
panded to 6 million Wikipedia'? entries based on these sememes. To cover the maximum

number of entities, we set m = 5000. Statistics showed in table 3.4.1.

SKB #Word #Sense #Sememe #AvgSen #AvgSem
HowNet'? 50,879 111,519 2,187 2.19 2.26
DictSKB'* 70,218 105,160 2,046 1.49 6.03
SKB-Entity 152,661 6,312,591 5,000 4135  6.74

Table 3.5: Statistics of SKB-Entity, and compared with HowNet and DictSKB. Note,
#AvgSen denotes the average sense number per word, #AvgSem denotes the average se-

meme number per sense.

https://github.com/SauronLee/SKB-DA
10https://wordnet.princeton.edu/
https://sobigdata.d4science.org/group/tagme/
2https://dumps.wikimedia.org/
Bhttps://github.com/thunlp/OpenHowNet
Yhttps://github.com/thunlp/DictSKB
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3.4.2 Model Construction

In the modeling part, we use the state-of-the-art graph-based STC model SHINE [51].
SHINE constructs word-level, POS-level, and entity-level graphs (NELL [68]) denote as
G, 9y, and ¥,. We replace the entity graph &, with sememe graph ¥;.

Specifically. ¢4 = {#',A} where ¥ is a set of nodes and A € R!”1XI”1 is the adjacency
matrix. Each node v/ € ¥. Define the feature matrix of ¥ as X € RI” %4 then the

feature of V' as x' € R4m,

* Construct %,: [A,];; = max(PMI(vi,,3,),0) PMI denotes the point-wise mutual

information between words [49]. x/, € RI7w[+word_dim

is concat by one-hot encoding
and Glove word embedding. Define the word to short text adjacency matrix as
[Ayos)ij = TF-IDF(V@,V!,), where A,y € RI7#XI7s| and vi, € ¥y denotes each

short text node.

* Construct ¥,: Use NLTK!S to convert word nodes to POS tag nodes, and set
A,]ij = max(PMI(vi,,v{,),O). X, € R”? is a one-hot vector. Set the POS tag to
short text adjacency matrix as [A ,oq]i; = TF—IDF(va, vgt), where A 5 € RI7pIx 175l

* Construct ¢%;: We use sememe as entity nodes, which means that the number of

entity nodes is fixed no matter the dataset. In constructing the edge between the 7,

and the 75, we consider the senses of the word. Specifically, in Figure 3.10.

Our approach is first to compute the embedding representation of the word in the

current text using a self-attentive mechanism, as
' ' T
Xl vat word = SOFTMAX (xiv- X7 % e) X, (3.10)

where [X,,], € R 4-4imx7i| means the word embedding matrix in ¥, % € ¥y
means the 7th sort text. Since sentence length affects the bias of words in a sentence,

we cite the method of [54], where an amplifying coefficient e € R; and e > 0 is

Bhttps://www.nltk.org/api/nltk.tag.html
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Sense Discriminator

SKB: Apple Compute cosine similarity
Sense 1:  company, tecz@gy\sh.‘

Sense 2:  band, British
Self-attention - POS tags set  Words set

Amplifying coefficient

Apple ceased shortly after the release of its first album. Apple allows users to stream over 90 million songs to their device on demand.
TAGME: Tagged text: Apple release album Apple users stream device on demand
Topics: Apple Inc.  Synthesizer — Album Apple Inc.  Internet  Streaming media ~ Mobile device  Video on demand

Figure 3.10: Construction of sememe-based edges. We utilize the sense discriminator
to select the correct sense. “ Apple ” is an entity in both sentences, the left side indicates
the band, and the right side indicates the company; however, it is not well differentiated

for TagMe. Note that the dotted line indicates that this sense will be discarded.

multiplied after Softmax to enhance the bias ratio of similar semantic words, we set
e=4.

Then, use the same method to calculate each sense vector

ik — SOFTMAX (Xiv X,]; % e) [Xsle s (3.11)

Xlocal_sense
and returns the sememe nodes as ¥’ for the sense most relevant to the ith word.

¥ = max (Cos(

i il
Xlocal_word ) Xlocal_sense) 9

(3.12)
-+, COS(Xleat_ords Xivcal_sense))
Next, we define the adjacency matrix of text nodes to sememe nodes as
[Asast)j = ((Enasen © Evendsem) U, (3.13)
- U( vﬂzsen@gsen%em))—rv |
where
w2sen = COS (Xfocal_wormXfﬁcaz_sense> ; (3.14)
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and

sien25em = Cos (Xivv [XY];c) ) (315)

i means the number of words in the current short text. In order to include more
words, and [A|; denotes the relationship of each 75 to #;. We use sense nodes
as weight parameters to help learn the weights of words to sememe. We use the
public GloVe word embeddings!® as the original vector of words with sememes. In

the representation of the relationship between sememes,

[Ay];; = max(Cos(x},x/),0), (3.16)

§)s

xé,x{ € X,; and X, € Rmword_dim e tried to use the Glove word embedding and
the TransE method [69]. For the details of TransE, we used the open source codel”
and set the number of training times to 1,000 and the dimension to 300. the result

is that Glove word embedding performs better.

The learning node embedding part is consistent with SHINE, composed of two layers of

a graph convolutional network (GCN) [46].

3.4.3 Experiments

All experiments were conducted on an NVIDIA Tesla K80 GPU and AMD Ryzen 7 2700
Processor. We perform experiments on Snippets'®. The Snippets is a dataset of web
search snippets returned by Google Search [70]. It contains 12,340 texts, with an average
token count of 14.5 per text, divided into eight categories.

In setting hyperparameters, we set the sliding window size of PMI as 5, set the thresh-
old as 2.7, the learning rate as 53, the dropout rate is set as 0.5, and train the model 1000
epochs.

We find that the average number of sememe for senses significantly impacts the

16https://nlp.stanford.edu/data/glove.840B.300d.zip
7https://github.com/thunlp/OpenKE
Bhttp://acube.di.unipi.it/tmn-dataset/
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model, like in Figure 3.11. Note that we set an upper bound 6 € N* < 10 on the number
of sememe per sense. The method calculates the cosine similarity between the current

word and the sememes and returns the 6 largest sememes.

0\ Indicators
@
82 —e— ACC
s F1
81

80

Test Performance (%)

=

2 4 6 8 10
Upper-Bound of sememes per word

78

Figure 3.11: Analyze the effect of the average sememe number for senses on the model.

Following [51] and [71], we randomly sampled 40 labeled short texts from each cat-
egory. Half of them form the training set, and the other half form the validation set for
hyperparameter tuning. Experimentally, our method performs better than the baseline in

both accuracy (ACC) and F1 score (In Table 3.6).

3.5 Conclusion

This work has pioneered an attempt to use SKB as an entity network applied to short
text classification and has good performance. Surprisingly, lowering the average sememe
number of senses significantly improves the performance of the model, probably due to
the redundancy of our SKB construction. In addition, we believe that this does not fully

exploit the performance of SKBs. We will continue this work to optimize the graph net-
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Snippets

Model ACC F1

TFIDF+SVM 64.70 59.17
LDA+SVM 62.54 56.40
PTE 63.10 58.96
BERT-avg 79.31 78.47
BERT-CLS 81.53 79.03
CNN-rand 48.34 42.12
CNN-pre 77.09 69.28
LSTM-rand 30.74 25.04
LSTM-pre 75.07 67.31
TLGNN 70.25 63.18
TextING 71.13 70.71
HyperGAT 70.89 63.42
TextGCN 77.82 71.95
TensorGCN 74.38 73.96
STCKA 68.96 61.27
HGAT 82.36 74.44
STGCN 70.01 69.93
SHINE (Tesla v100) 82.39 81.62
SHINE (CPU) 82.03 81.92
SHINE+SKB (CPU) 82.60 82.00

Table 3.6: Test performance (%) measured on Snippets dataset. Our model is shown in
bold, and it boosts the ACC and F1 score of the current best performing model (marked

in underline) by 0.57 and 0.08 percentage points, respectively.
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work for SKBs and try to employ SKBs on more graph neural networks in the future.
In the data augmentation section, we utilize a more straightforward method of ex-
tracting SKBs from word definitions instead of deep clustering. We extend the original

SKB dictionary to allow for broader application to downstream tasks.
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4. Sentence Representation

We found that graph-based text encoding methods tend to ignore the sequential struc-
ture (syntactic features) of the text. So we further discuss how to add heterogeneous
information to the Sequence to Sequence (Seq2Seq) model, thereby keeping the syntactic
features. Moreover, we demonstrate the effectiveness of our method through extensive
experiments.

The difficulty of sentence representation learning is how to express the semantic in-
formation of the text effectively. Especially in question-answering systems, understanding
the semantics of a sentence is often more important than what topic the sentence belongs
to. History tells us that deep learning can accomplish artificial intelligence tasks that re-

quire highly abstract features such as Figure 4.1.

D BiLSTM -« BiLSTM -« BiLSTM <«— Semantic Features
-— BiLSTM > BiLSTM > BiLSTM <«— Syntactic Features
. : :

<— Word Features

Deep

Figure 4.1: Learning Hierarchical Representations

This chapter will introduce two essential language models for learning sentence rep-
resentation: LSTM and BERT in section 4.1.1, which are introduced in the chapter
on word representation learning, and which can also represent sentence information by
changing slightly. Their shortcomings are explored in section 4.2, and our approach to
addressing these problems is presented in section 4.3. Section 4.3 also presents our pro-

posed paper-finding tool, which helps researchers quickly find the needed papers.
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4.1 Related Work

4.1.1 Bidirectional Long Short-Term Memory Networks

LSTMs or RNNs have many application scenarios. Several design approaches for them

are shown in Figure 4.2 (refer to Dr. Andrej Karpathy’s blog!), and this figure shows five

different architectures:

one to one

K

—->

4 ¥

Figure 4.2: Encoding Types of RNNs or LSTMs. Each rectangle is a vector and arrows

represent functions (e.g. matrix multiply)

B One to One: The first architecture is not a temporal model and does not contain

—->

one to many
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ion Learning <
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> >
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> > > >
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ion Learning

many to many
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any temporal information. It is suitable for tasks like image classification.

B One to Many: This subillustration has one input at the moment ¢ = 1 but one output

at each moment. This architecture is suitable for tasks like image captioning. In

other words, it is given a picture to generate the corresponding text.

B Many to One: This illustration has an input at every moment but an output only at

the last moment. It is suitable for tasks like sentiment classification.

Thttp://karpathy.github.io/2015/05/21/rn-effectiveness/
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B Many to Many: Typical machine translation models

B Many to Many: The language model we introduced before. It can also be used for

Named-entity recognition tasks.

Since RNNs suffer from vanishing gradients, which causes them not to capture the previ-
ous information and is caused by long series of multiplications of small values, diminish-
ing the gradients and causing the learning process to degenerate [72]. In contrast, LSTMs
use units called cells in each hidden layer instead of multiplication operations. The long
term dependencies and relations are encoded in the cell state vectors and it is the cell state
derivative that can prevent the LSTM gradients from vanishing. BiLSTMs compensate
for these drawbacks. A Bidirectional LSTM, or BiLSTM consists of two LSTMs: one
taking the input in a forward direction, and the other in a backwards direction. Moreover,
A Bidirectional LSTM, or BiLSTM, consists of two LSTMs. One taking the input in
a forward direction, and the other in a backwards direction, which effectively increases
the amount of information available to the network and improves the context available
to the algorithm. We will introduce the BiLSTM model in detail in Section 4.3 and em-
ploy it as a baseline model to construct BILSTM models with embedded heterogeneous

information.

4.1.2 Bidirectional Encoder Representations from Trans-
formers

Coincidentally, there are also many different constructs for Bidirectional Encoder Repre-
sentations from Transformers (BERTs), which can be adapted to 11 downstream tasks of
natural language processing, and they can be roughly grouped into four main categories.
These four types of tasks are: sentence pair classification tasks, single-sentence classifica-
tion tasks, question answer tasks, and single-sentence tagging tasks, and the modifications

to the network for the four tasks are shown in the following figure 4.3.
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4

(a) Bidirectional Encoder Representations from Transformers

______________ o e |-y
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(b) Bidirectional Encoder Representations from Transformers
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(c) Bidirectional Encoder Representations from Transformers
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(d) Bidirectional Encoder Representations from Transformers
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Figure 4.3: Encoding Types of BERTs. The subillustrations (a), (b), (c) and (d) rep-
resent Sentence Pair Classification Tasks, Single Sentence Classification Tasks, Question
Answer Tasks, and Single-sentence Tagging Tasks, respectively. Note, the final hidden
vector of the special [CLS] token as C, and the final hidden vector for the i input token
as T(i)
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B Sentence Pair Classification Tasks:

1. Sentence pair classification tasks are sequence-level tasks (for each sequence,
only the loss of one output in the Bert model is calculated), and solving the
sentence pair classification task using the Bert model requires the following

adjustments to the Bert model.

2. A classification layer (fully connected layer + softxax layer) is added after the
output corresponding to the [CLS] position to calculate the final classification

probability of the output.
B Single Sentence Classification Tasks:

1. Similarly, a classification layer is added after the [CLS] output to calculate

the classification probability.
B Question Answer Tasks:

1. A classification layer (fully connected layer + softmax layer) is added after
the output positions of all Bert answer tokens to output the probability that
each position is the beginning and end of the answer. Finally, the mean loss

of the start and end losses is calculated.
B Single-sentence Tagging Tasks:

1. A classification layer (fully connected layer + softmax layer) is added after all

Bert outputs for outputting the probabilities of the final labeled categories.

We extensively utilize BERT-based pre-trained language models for generating datasets

on the Paper Recommendation System task in Section 4.3.
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4.2 The Completeness of Sentence Representa-

tions

The traditional approach of fine-tuning downstream tasks using pre-trained language mod-
els ignores some heterogeneous features in sentences because they are difficult to distin-
guish in the same vector representation. We suppose these heterogeneous features should
be learned separately by the language model and combined to improve the overall sen-

tence expression (like Figure 4.4).

Learning Sentence Representations Sentence Representations

Modeling Heterogeneous

Information
Sentence Representations | it |
Sememe Topic Sentence
> g ) Representations @ Representations | Representations
Bidirectional Encoder Representation

Learnin
= Bidirectional Encoder Representation

T ——

— ' '

Figure 4.4: Sentence Representations Learning with Heterogeneous Information

In the next section, we propose a method for question generation based on unsuper-
vised multi-hop question answering to adapt to the beginner’s questioning style, using
NLP papers as an example. Specifically, we employ a keyphrase extraction pre-training
model to generate questions on the pre-trained Q&A model utilizing the keyphrases as
answers. Next, construct an extensive keyphrase dictionary by converting questions into
descriptions operating linguistic rules. Finally, we augment the questions by replacing
the keyphrase in the questions with their definitions. Moreover, to implement the paper
recommendation task, we constructed a simple neural network recommendation model to
predict the order of paper relevance. We collected paper abstracts from NLP’s top venues

published from 2017 to 2022 for training. In extensive experiments, our method shows
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comparable performance.

Furthermore, Section 4.3.2 uses the paper recommendation model proposed in this
thesis as the baseline model and adds more heterogeneous information (e.g., author, title,
sememe) to the original one. After experiments, our model has been further improved and

substantially outperforms the baseline model in accuracy.

4.3 I NLP Paper Recommender: MI1YU

Researchers quickly find and understand the articles relevant to their research remains
challenging due to the rapid iteration of technologies and the ever-increasing volume of
scientific articles. In this work, we propose a method for question generation based on
unsupervised multi-hop question answering to adapt to the beginner’s questioning style,
using Natural Language Processing papers as an example. Specifically, we employ a
keyphrase extraction pre-training model to generate questions on the pre-trained Q&A
model utilizing the keyphrases as answers. Next, construct an extensive keyphrase dic-
tionary by converting questions into descriptions operating linguistic rules. Finally, we
augment the questions by replacing the keyphrase in the questions with their definitions
(the detail in Subsection 4.3.1). Moreover, to implement the paper recommendation task,
we constructed a simple neural network recommendation model, namely M1YU (ﬁ) in
Figure 4.5, to predict the order of paper relevance, which incorporates the title, author,
and sememe information of the paper. We collected paper abstracts from top venues of
NLP published from 2017 to 2022 for training. In extensive experiments, our method

shows comparable performance. (the detail in Subsection 4.3.2).
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Is this the paper you are looking for?

Title: Enhancing Transformer with Sememe Knowledge
Author:Yuhui Zhang...

Which paper used minimal
semantic units in the transformer?

Figure 4.5: NLP Paper Recommender: MI1YU

4.3.1 Finding NLP Papers by Asking a Multi-hop Ques-
tion

In recent years, NLP has seen rapid growth with the impact of deep learning, then many
researchers have flocked to this research boom. However, due to the massive increase
in scientific papers per year, it is challenging for NLP researchers (NLPers) to find pa-
pers that are helpful to them quickly. This has led to numerous duplicate studies (such
as reinventing the wheel) syndrome. Therefore, many scholars believe paper reading is
crucial for NLPers and even more significant than coding ability. Moreover, papers often
incorporate multiple terminologies. Specifically, when researchers enter a new field, they
cannot search the relevant papers precisely based on terminologies. Nevertheless, this
issue has not been considered in the extant studies [73].

A more intuitive solution is to convert the academic style text in the paper into infor-
mal text that non-specialists can understand and then ask questions from the informal text
style paper to improve the search efficiency. Regarding this aspect, the Text Style Transfer
(TST) [74] task is better-known among the related studies, while the layman style transfer

is a subtask of TST, also commonly dubbed the Simplicity (Complicated — Simple) task.
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One of the successful efforts has been to employ medical data to perform text conversions
between expert and laymen styles, namely Expertise Style Transfer (EST) [75]. This work
employs the terminology definitions from the health reference Merck Manuals as a bridge
to EST. However, numerous already constructed artificial lexicons are unlikely to exist in

the emerging field, making EST extremely challenging.

d
While large-scale pretraining
has achieved great success in
many NLP tasks ... In this
work, we introduce sememe
knowledge into Transformer
and propose three sememe-

enhanced Transformer models. ,

\
~

Sememes are defined as the
atomic units to describe the
semantic meaning of concepts
... The experimental results
show that our method
outperforms existing non-

. information. , \ external information models. ,

Sememes are minimum
semantic units of word
meanings ... our models
being capable of correctly
modeling sememe

—f——— e e~
————— e e~
e~

The performance of the Transformer can be A
improved by various Tokenizers (subword units). |
If we analyze this problem by minimal semantic |
units ... )

|
|
|
I
|
|
|
\

Figure 4.6: Automatic generation of terminology dictionary-based questions from un-

structured text.

This paper proposes a method to extract terminology definitions from papers to solve the
terminology dictionary problem (Figure 1). Our motivation is that since the term is de-
fined in the paper, it is most straightforward to extract the definition of the term from
the paper. Specifically, we employ an automatic Specifically, we employ an automatic
keyphrase extraction [76] model to extract keyphrases as terms and use the pre-trained
language model [77] fine-tuned on the Q&A dataset to generate questions utilizing the

terms as answers automatically. Following this, we constructed an extensive keyphrase
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dictionary as a terminology dictionary by converting questions into descriptions operating
linguistic rules [78].

Moreover, instead of rewriting sentences in papers to address the terminology prob-
lem in paper searches, we opted to rewrite the questioner’s question via building a multi-
hop question. Specifically, we treat the relationship extraction task as an answer extraction
task, ask questions about papers using manually defined entity relationships and minister
their answers as entities associated with the question type. Finally, we employed an unsu-
pervised multi-hop question answering technique [79] to rewrite the questions by treating
terminologies as bridge entities.

Furthermore, to implement the paper recommendation task, we constructed a Bidi-
rectional Long Short Term Memory (BiLSTM) [43] network to predict the order of paper
relevance. Moreover, we provide the inference API of the model on the Hugging Face?.

Our main contributions can be summarized as:

* We propose a method to extract terminology definitions from papers to solve the

terminology dictionary problem.

* We employed an unsupervised multi-hop question answering technique to rewrite
the questions by treating terminologies as bridge entities. Afterward, we con-

structed a sizeable single-round Q&A dataset for paper retrieval.
* We constructed a BiLSTM network to predict the order of paper relevance.

In the following subsections will divide into three parts: terminology dictionary con-
struction (subsection 4.3.1), question generation (subsection 4.3.1), and paper prediction

model (subsection 4.3.1).

Terminology Dictionary Construction

We employ the method of unsupervised problem generation [79] as the basic framework.

Subsequently, adding the terminology extraction module and terminology normalization

Zhttps://huggingface.co/SauronLee/BiLSTM_Finding_ NLP_Papers
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module. Moreover, augment the data by employing multi-pretrained models.

Specifically, as in Figure 4.7, we used two pre-trained models to extract terms. First,
We use the pretrained Google T5 model [80] fine-tuned on SQuAD [81] to automatically
generate questions & answers and use the answers as terms.> Secondly, We use Keyphrase
Boundary Infilling with Replacement (KBIR) [82] as its base model* and fine-tune it on
the Inspec dataset [83] to extract keyphrases as terms.

To avoid including common words or terms with repeated meanings in the term dic-
tionary, we removed words that appeared on Wikipedia with a word frequency’ greater
than 2,000. Then, we solve problems like “2Seq" (Seq2Seq) by replacing incomplete
words according to the terminology dictionary.

In the question generation part, we use the TS model fine-tuned on SQuAD [84] to
generate questions based on the terms as answers. Finally, the questions are converted into
declarative sentences using straightforward word replacement [78] and fill mask based on

XLM-RoBERTa [85] base-sized language model®.

Question Generation

This subsection will introduce the question design and slot filling.
We manually defined the relationship structure of the entities in the paper and de-
signed the one-hop and multi-hop questions based on the entity relationships. Specifically,

We annotated and took notes’ on numerous NLP papers through the entity annotation tool

3https://github.com/teacherpeterpan/Unsupervised-Multi-hop-

QA/blob/main/MQA_QG/Operators/T5_QG.py
“https://huggingface.co/ml6team/keyphrase-extraction-kbir-inspec
>https://github.com/IlyaSemenov/wikipedia-word-frequency/blob/master/results/enwiki-

20190320-words-frequency.txt
®https://huggingface.co/xlm-roberta-base
Thttps://github.com/SauronLee/Paper-KG
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O&A Generation without answer (T5): Answers

A bS tract text Keyphrase Extraction (KBIR-inspec): Keyphrases

Sememes are defined as the atomic units to describe the semantic meaning of concepts. Due
to the difficulty of manually annotating sememes and the inconsistency of annotations
between experts, the lexical sememe prediction task has been proposed. However, previous
methods heavily rely on word or character embeddings, and ignore the fine-grained
information. we propose a novel pre-training method which is designed to better incorporate
the internal information of Chinese character. The Glyph enhanced Chinese Character
representation (GCC) is used to assist sememe prediction. We experiment and evaluate our
model on HowNet, which is a famous sememe knowledge base. The experimental results
show that our method outperforms existing non-external information models.

Terminology Extraction

|

Remove common and infrequent keyphrases & Entity normalization

Question Generation with answer (T5)

question: What is the GCC? question: What are defined as the atomic units
answer: Glyph enhanced Chinese Character to describe the semantic meaning of concepts?
representation answer: Sememes

question: What is a famous sememe knowledge question: How is annotating sememes

base? difficult?

answer: HowNet answer.: manually

question: What is HowNet?

answer: sememe knowledge base

Question Generation

Convert a question into its declarative

What are defined as the atomic units to describe the semantic meaning of concepts ?

The <mask> that are defined as the atomic units to describe the semantic meaning of concepts .

XLM-RoBERTa (Fill-Mask)

The terms that are defined as the atomic units to describe the semantic meaning of concepts .

Changing Interrogative

to Declarative

Figure 4.7: The pipeline of terminology dictionary construction: In Terminology Ex-
traction and Question Generation, The blue font represents terminologies extracted by the
Q&A generation, the red font represents the keyphrase extraction results, and the green
font represents the shared terminologies. Finally, the questions are converted into declar-

ative sentences using straightforward word replacement and fill mask.
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Brat® [86]. We summarized eight types (like Figure 4.8) of entities with 19 entity rela-
tionships (like Figure 4.9.

Entities definition
Defined as a broad concept. Issue An unresolved issue.
A t}femy can also be a conclusion. I.t may have been Task (1) A new tas.k rgquires a new evaluation dataset or measure. (2)
validated or may not have been validated yet. Near the beginning of the paragraph, followed by the challenge.
A defined method or model. Dataset Datasets or corpora.

1t generally refers to the language on which the . U .
Language 3 l refe A Zuag VXA T T Metrics for evaluation based on some benchmarks.
dataset or examination results are based. k

Figure 4.8: One-hop and multi-hop questions building: Entity Declaration

Then, we defined 17 possible questioning styles for the questioner based on entity re-
lations. (including eight types of one-hop questions and nine types of multi-hop ques-
tions). Note that in the question design part, we just concatenated “which paper" and

“relationship" or “entity" as shown in Figure 4.10.

It may not follow the grammatical structure; therefore, we have employed the TS model”
finetuned on the JFLEG dataset [87] to make Grammatical Error Correction (GEC) on the
spliced sentences.

In the slot filling part, we designed questions based on the entity definition (shown
in Table 4.1) and using the XLM-RoBERTa base-sized language model'? fine-tuned on
SQuAD 2.0 [88] to ask these questions about the paper and thus obtain the corresponding
entities &. Then we filter out entities that do not appear in the terminology dictionary .7
(suchas &=&N9).

Moreover, to reduce the terminology in the question, we use term definitions to re-

8https://brat.nlplab.org/
“https://huggingface.co/vennify/t5-base-grammar-correction
10https://huggingface.co/deepset/xIm-roberta-base-squad2
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Schema design
proposed

proposed

proposed

resulted

Language

Achievement

Figure 4.9: One-hop and multi-hop questions building: Schema. Where rectangles

represent entities and ellipses represent entity relationships.
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Entity Question
) What theories are presented In this thesis?
Theorie
What theories are this paper based on?
Field What field does this paper belong to?
What language is the data for this paper based on?
Language
What languages are used In this thesis?
What problem does this article solve?
Issue
What is the current unresolved issue?
What methods are used In this thesis?
Method What technologies are used in this article?
What new methods are proposed In this thesis?
What task does this article belong to?
Task What tasks are used In this thesis?
What new tasks are proposed In this thesis?
Which datasets are used In this thesis?
Dataset
What new datasets are presented In this thesis?
What are the results of this paper?
Result

What are the conclusions of this paper?

Table 4.1: Buliding questions based on the entity definition for entity extraction.
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Questions design

One-hop questions design
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Figure 4.10: One-hop and multi-hop questions building: Template Definition. We

defined 17 possible questioning styles for the questioner based on the schema.

place the related terms. Primarily, we calculated the cosine similarity between the slot
type and the “mask word" in the term definition. We excluded the term definitions with a
similarity of less than 0.8 due to the existence of renaming of different types of terms or

inconsistency between the term definition and the slot definition.

Paper Prediction Model

In this subsection, we are motivated by the reverse dictionary model [89]. We first encode
questions and papers, i.e., questions and answers, into vectors and then utilize a super-
ficial linear layer to map the question vector to the paper vectors space and update the
network by computing the cross entropy loss. Finally, the papers are ranked by similarity

(Figure 4.14).

Regarding the coded paper vector, we constructed a bipartite graph based on the rela-
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Paper dimension

BiLSTM with Attention B Mapping Matrix
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LINE Network
BiLSTM
Layer

Juey 1odeq

Figure 4.11: BiLSTM Mapping Flowchart: The whole network architecture consists
of three parts: sentence representation learning, paper representation learning, and paper

prediction.

tionship between the words that appear in the paper and the paper itself. Then we employ
the LINE graph embedding model [57] to train the node vectors and employ the second-
order similarity as paper vectors.

To encode the problem vector, we used Bidirectional Long Short Term Memory (BiL-
STM) [43] as the base network. Formally, for an input question 2 = {q,--- g Q'}, we
replace the words in the question with word embeddings and pass them to BiLSTM. The

output of the model is a question vector after the attention mechanism.
Vyuestion = Attention(Encodepirstm(2)), 4.1)

Where the outputs of Encodep;r sty (2) are two sequences of bi-directional hidden vec-

tors

— — — —
{hla"'ah\2|}7{h17"'7h\2\}7

—
where 4 ;, h ; € R" denote the hidden layer states passed forward and backward, 4 is the

dimension of directional hidden states. Thus the formula can be rewritten as:

2 — —
Vauesion = Y, (CC 121, B ) -CC e 1) ) x (K3 ), 4.2)
i=1
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where C(-,-) is a simple concatenate function. Then we map the Vgyesion to the paper

vectors space by the following equation:

Vpaper = Wpapervquestion + bv (43)

where W4, € RP X2 ig g weight matrix, b € R” is a bias vector. where p is the dimen-
sion of paper vectors as Vpaper; ;v from the LINE model. Finally, calculate the confidence

score of each paper using the dot product:

SCOT€pase = Vpaper * Vpaperyng » (44)

4.3.2 Improving Finding NLP Papers via Heterogenous
Information

In this subsection, we introduce heterogeneous information to improve the expressive-
ness of sentences in specific downstream tasks (Note that this study only focuses on paper
recommendation system design). Compared to the previous section, we collect more in-
formation about the paper, such as the title, author and sememe, and use this information
to improve the recommendation capability. Our motivation comes from the reverse dic-
tionary model. The input to the model requires a question from the finder. The model
simultaneously predicts three heterogeneous features (title, author, and sememe) of the
paper based on the question and finds the most relevant paper based on each feature.
Finally, all the heterogeneous information is combined with the correlation coefficients
of the papers, and the papers are ranked such as 4.12. We present the modeling of ti-
tle, author and sememe information in subsubsection 4.3.2.1, subsubsection 4.3.2.2 and
subsubsection 4.3.2.3, respectively, and present the experiments and results in subsection

4.3.3.
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Figure 4.12: Modeling Heterogeneous Information for Paper Recommendation Sys-

tems

Modeling Title Information

Since the words in the paper title may appear in the finder’s query, encoding the paper
title information into the model is necessary. First, we create a set of paper title words
T,, = {woty, - ,wot;r, |} and then extract each input word’s hidden layer representation
in a single-layer BiLSTM to predict the closest paper title words. Specifically, we use a

single-layer perceptron to calculate the score of the current input word and each title word
scorey;y;, = Wiitiehi + byigie, 4.5)

where score ile € R/TI , Wiitie € RITI*2 jg o weight matrix, and by, € R/Tlis a bias vector.

Then keep only the title word with the highest score for each input word as

SCore i1, = max (scoreiit le)- (4.6)
i<

Ix

Finally, the score of the paper predicted using the title words is calculated by summing:

index(wot)
SCOTeitie paper = Z score, i, , 4.7)
wot € T,
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where index(wot) returns the title word index of wor.

Modeling Author Information

Likewise, we define A,, = {woay, - ,woa, |} as the author set. For the author infor-
mation, we directly capture the query representation through the attention mechanism to

calculate the score of the current query and each author, like

SCoréguthor = Wauthorvquestion + bauthor (4.8)

Similarly, the scores for each paper are obtained by adding up the author scores. The

formula can be written as

index(woa)
SCOTequthor, paper = Z score oy 4.9)

woa € A,
Modeling Sememe Information

A sememe is a semantic language unit of meaning, and it can also be applied to any
scene that needs to express meaning. We assume that a thesis is composed of some basic
meanings, then we can find the paper using some sememes. We constructed the sememe
set following the method based on the Wikipedia expansion as in Section 3.3. Similarly,
we guess that words similar to the sememe of the paper might appear in the finder’s
query, so we utilize the hidden layer vector output from BiLSTM to calculate the sememe
scores of each paper separately and then predicted the most relevant paper by summing
the sememe scores of each paper.

First we define the sememe set S,, = {wosy,--- ,wosg, |}, then calculate the sememe

score past a single-layer perceptron:

scor ei‘ememg = Wiememehi + Dsememe, 4.10)

where score! € RSl Wymeme € RISX¥21 and byitie € R/l are defined as a trainable

sememe

weight matrix and a bias vector, respectively. Then the sememe set of the query is calcu-
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lated by max pooling as:

@.11)

i
SCOr€sememe =— MaAx (SCOresememe)?
i<|2|

Find the corresponding set of sememe by the index of sememe of each paper and sum
them up:

index(wos)
SCOT€sememe,paper = Y, SCOT€sememe (4.12)
wos € Sy,

The final paper score is obtained by summing up the paper prediction scores of the four

features with the formula

scorepaper = Z SCOTerype, paper- 4.13)

type € {base.title,author,sememe}

4.3.3 Experiments

In this subsection, we introduce our dataset, the specific statistics, and the model’s hy-
perparameters and show the probability that our model succeeded in predicting the paper.

All experiments were conducted on an NVIDIA A100-SXM4-40GB GPU.

Settings

We collected paper abstracts from NLP’s top conferences (ACL, EMNLP, NAACL)!!
published from 2017 to 2022 for training and showed the statistics for terminology ex-
traction in Table 4.2 and for making the training set and the test set in Table 4.3.
Primarily, we extracted 2,000 Q&A pairs as the test set. In addition, we have taken some
examples from the dataset based on each question type and presented them in Table 4.4.
Note that there are cases in the one-hop type dataset where a single question points to
multiple papers.

For the BiLSTM model, the dimension of non-directional hidden states is 300 x 2,

https://aclanthology.org/
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#Paper #Trem #Trem_wiki #Trem_norm

13,38 58,157 57,077 55,962

Table 4.2: Statistics about removing common terminology and terminology normaliza-
tion. Note, #trem_wiki denotes the number of terms after removing common words in

Wikipedia. #trem_norm denotes the number of terms after normalization.

#Q&A #Merged #Deduped #Split
557,067 (One-hop) 430,885 (train)
691,317 432,885
115,934 (Multi-hop) 2,000 (test)

Table 4.3: Q&A dataset Statistics: Represent the number of Q&A, the number after
merging, the number after de-duplication, and the number after splitting into training and

test sets, respectively.

Type Question
(1) Which paper proposed the tools that can improve the predic-
One-hop
tion of the difficulty and response time parameters for a high-stakes
medical exam ?
(2) Which paper solved issues are investigates the effectiveness of
pre-training for few-shot intent classification ?
(1) Which paper used the method that is one of the state-of-the-art
Multi-hop

deep learning methods used in this study to solve learns content
selection and summary generation in an end-to-end fashion ?

(2) Which paper used method is external knowledge bases (KBs) to
solve issues are to improve recurrent neural networks for machine

reading ?

Table 4.4: Examples of each question type.
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the dropout rate is 0.5. we use the 300 dimensional word embeddings pretrained on
Wikipedia-2014 and Gigaword-5 with GloVe'?, and the word embeddings are fixed dur-
ing training. For training, we adopt Adam as the optimizer with initial learning rate 0.001,
the batch size is 128, and trained 100 epochs.

For the LINE model, where the size of the node embedding is 300 dimensions, the
total number of training samples is 100 million, the starting value of the learning rate is
0.025, the number of negative samples is 5, and we only used second-order proximity for

training. Regarding the performance of the model.

Ablation Experiment

In evaluation. We extract the papers satisfying given prior knowledge (Node vectors of
papers pre-trained on LINE) from the top 100 results of our model to evaluate the per-
formance (Table 4.5). Note that the evaluation metric indicates the probability that the
ground truth will occur within the top 100 of the model’s predicted papers.

We trained 100 epochs and plotted Figures 5 and 6 to show the model’s performance
on various test sets. We find that the model flattens out after the 20th epoch, indicating
that the model successfully learns valuable knowledge from the problem and can predict
papers with high similarity.

In more detail, we compared two test sets, where the test data appeared in the training
set (Seen) and the test set that did not appear in the training set (Unseen). It is moot to test
on data that has already been seen, although we have evaluated this based on previous re-
search. Moreover, we did ablation experiments for each group of training data separately,
which are the “base” model with only BILSTM, “base +title” model with added title
information, “base + author” model with added author information, “ base + sememe ”
model with added sememe information, and “all” model with fused all information. We
find that the performance of the models is significantly improved after adding sememe

information.

Phttps://nlp.stanford.edu/data/glove.6B.zip
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Test data Model Accuracy@1  Accuracy@10 Accuracy @100

base 62.56 74.58 82.62
base +title 64.97 78.36 86.81
Unseen
base + author 63.66 75.75 83.51
base + sememe 67.03 80.49 89.83
all 67.37 80.21 90.24
base 65.38 77.40 84.89
base +title 68.33 81.45 88.66
Seen
base + author 65.45 77.88 84.89
base + sememe 69.98 84.54 93.26
all 70.26 84.95 94.36

Table 4.5: The performance of the BILSTM model on all test sets. Accuracy @1/10/100

denotes the accuracy that target papers appear in top 1/10/100 (higher better)
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Figure 4.14: The decreasing trend of the model’s losses on Seen test set.

4.4 Conclusion

In this work, we have implemented a simple paper recommendation system from data
collection, entity relationship definition, and multi-hop problem construction to the con-
struction of a paper recommendation model, and we have confirmed the effectiveness
of our model. Due to the lack of manually labeled data, we make extensive use of the
knowledge provided by the pre-trained model to serve as a priori knowledge, which is
an attempt to construct a knowledge base using the pre-trained model. Furthermore, we
utilize the same model to predict different information to achieve information fusion. The

effectiveness of our approach has been experimentally demonstrated.
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5. Conclusion

This study focuses on leveraging an external knowledge base to enhance the model’s
performance. Our ultimate goal is to embed knowledge into the model, and this thiese
considers only the most straightforward and primitive model structure, which is only the
beginning of the research. We believe that the current “ version answer ” of Text Repre-
sentation Learning is conducted over knowledge to pre-training directly. Naturally, this is
my main research content for the next three to five years.

Moreover, the research on our paper recommendation system is still ongoing. In the
future, I will focus on multi-round dialogue and cross-language recommendation systems
to serve researchers better. I am convinced that this will be the topic of my doctoral dis-

sertation.

) Hledam priizkum o konverzaci
doporuCovacich systémech.

REHLIAAVY— YRATLICET ZHE = Tbpcs npoy4saHe 3a pa3roBOpHU
ERUIEWEBWET, MpenopbYUTEAHU CUCTEMM.

BRH—R X THIEREFERRNGR,

<z | am looking for a survey on conversational
recommender systems.

Figure 5.1: Toward Cross-lingual and Multi-round Conversational MIYU.
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Data is not information, information is not knowledge. We have always believed that
the path to advanced intelligence is something other than piling up data. Although in re-
cent years, large-scale language models have shown humans that the ceiling of machines
is so close to human intelligence, this is just a greedy exploration of the limits of artificial

intelligence under Moore’s Law.

“ Information is not knowledge ”

— Albert Einstein

First, the quality of the data is too important. Whether it is two hundred billion or
two trillion parameters of the model, they are trained data that does not filter out false
information or information that is not helpful to us as humans. After all, we have seen
only some of the world’s information for so long. Secondly, I read a particularly poignant
quote “ When monkeys looked up at the stars, humans were born.” Perhaps at this stage
of Al, there is no such advanced intelligence as thinking and self-awareness, but research
on how to make machines learn to reason for themselves or "causal inference" is already
underway, and it is not unattainable.

Therefore, pre-training trillion parameter models can solve 90% of the current Al
problems, but this is not the optimal solution. There will be more changes before the

arrival of advanced intelligence.
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A. Appendices

A.1 Sememes Cluster Prediction in English

Ist 2nd 3rd 4th Sth 6th
drone pilotless; spacecraft; rabbuh; melodically; mobilizations; gunnery;
refueling; shuttlecraft; zengi; instrumentally; stationing; antiaircraft;
missile spacelab hashimi sonically forces airlanding
(0.03559) (0.03082) (0.02908) (0.02604) (0.01823) (0.01649)
leaders constitutionalists; business; political; ideological; election; religious;
politicize; financial; constitutionalist; ideology; elections; religiousness;
interventionist investment leftist ideologies party trinitarianism
(0.01723) (0.01462) (0.01262) (0.01242) (0.01182) (0.01142)
marijuana medication; medication; arrest; constitutionality; recourse; prosecution;
chronic; medications; suspects; constitutionally; overreaching; conviction;
hospitalization diabetic retribution unconstitutionality ~ unconscionable prosecute
(0.08371) (0.03051) (0.02976) (0.0253) (0.02307) (0.01823)
carrot flavouring; syrup; grasses; fruit; buttered; scared;
sugared; butter; berries; almonds; sweetening; scaredy;
juice juice shrubs blackcurrant butter crazy
(0.07528) (0.05256) (0.04119) (0.01989) (0.01989) (0.01847)
ozone evaporation; chemically; transpiration; gaseous; chemically; protrusions;
evaporative; peroxides; particulates; vaporization; peroxides; particulates;
contaminants nitrification contaminants hydrogen solvents concentrically
(0.09809) (0.04774) (0.0434) (0.03559) (0.02865) (0.02778)

Table A1l: Sememes cluster prediction in English

A.2 Sememe comparison on the Ohsumed dataset

SKB Sememe

DictSKB

Word

clostridium {cause, illness}
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Table A2 continued from previous page

Word SKB Sememe
SKB-DA {bacterial, cell, swollen}
colitis DictSKB {cause, illness}
SKB-DA {colon, inflammation }
pediatric DictSKB non
SKB-DA {care, child, medical}
thoracic DictSKB {neck, part}
SKB-DA {chest}
empyema DictSKB non
SKB-DA {body, cavity, lung, pu}
diagnosis DictSKB {wrong}
SKB-DA {identify, nature, phenomenon}
helicobacter DictSKB non
SKB-DA {bacteria, gram, negative, shape}
infection DictSKB {disease, someone}
SKB-DA {body, invasion, microorganism, pathogenic}
salmonella DictSKB {make}
SKB-DA { Gram-negative, bioweapon, fever, food, poisoning, rod-shaped}
cerebrospinal DictSKB non
SKB-DA {brain, cord, spinal }
rhesus DictSKB non
SKB-DA { Asia, medical, southern}
mangabey DictSKB non
SKB-DA {arboreal, eyelid, limb, monkey, tail, white}
splenic DictSKB non
SKB-DA {spleen}
tissue DictSKB Sensel: {nose, paper, piece}
Sense2: {paper, use, wrap}
Sense3: {cell, form}
SKB-DA Sensel: {cloth, cotton, fabric, interlace, piece, strand, wool }
Sense2: {paper, soft, translucent}
Sense3: {cell, function, organism, structure }
itraconazole DictSKB non
SKB-DA* {fungal, infection, medication, mouth, treat}
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Table A2 continued from previous page

Word SKB Sememe
phaeohyphomycosis  DictSKB non

SKB-DA* {cell,characteristic,diverse,fungi,infection,tissue,yeast }
dermatophyte DictSKB non

SKB-DA* {chlorophyll,evolution,feed,fungi,fungus,protective }
percutaneous DictSKB non

SKB-DA {cream, form, medication, ointment, patch, skin}
venous DictSKB {carry}

SKB-DA {function, vein}
catheterization DictSKB non

SKB-DA {body, operation}
subspecialty DictSKB non

SKB-DA* {field, knowledge, medical, professional, skill, trade}
tinea DictSKB non

SKB-DA Sensel {fungi, infection, nail, patch, skin}

Sense2 {genus, moth, type}

candidiasis DictSKB non

SKB-DA {fungi, genus, infection}
immunization DictSKB protect

SKB-DA* {agent, immune, infectious, process}

Table A2: Sememe comparison on the Ohsumed dataset.

Where “non” means no sememe of the word, we have merged WordNetSKB and WikiSKB+ as SKB-DA,
note that the SKB-DA* with an asterisk indicates that this sememe is from WikiSKB. We extracted only the first
15 sentences of specialized words in the Ohsumed. When constructing SKB-DA, we did not purposely adjust the
medical-related words, but it performed well. We found that DictSKB has insufficient vocabulary and words with
similar meanings with the same sememes. e.g., “ clostridium” and “ colitis . In this way, it is questioning to

classify words effectively in the downstream task of natural language processing.
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Figure B1: The accuracy @10 performances by using the BILSTM model on Seen test

set.
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Figure B2: The accuracy @100 performances by using the BILSTM model on Seen test

set.
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Figure B3: The accuracy@ 10 performances by using the BILSTM model on Unseen

test set.
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Figure B4: The accuracy @100 performances by using the BILSTM model on Unseen

test set.
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Figure B6: The decreasing trend of the model’s losses on Unseen test set.
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